Derivatives over Certain Finite Rings
نویسندگان
چکیده
منابع مشابه
Alternant and BCH codes over certain rings
Alternant codes over arbitrary finite commutative local rings with identity are constructed in terms of parity-check matrices. The derivation is based on the factorization of xs − 1 over the unit group of an appropriate extension of the finite ring. An efficient decoding procedure which makes use of the modified Berlekamp-Massey algorithm to correct errors and erasures is presented. Furthermore...
متن کاملTriangularization over finite-dimensional division rings using the reduced trace
In this paper we study triangularization of collections of matrices whose entries come from a finite-dimensional division ring. First, we give a generalization of Guralnick's theorem to the case of finite-dimensional division rings and then we show that in this case the reduced trace function is a suitable alternative for trace function by presenting two triangularization results. The first one...
متن کاملCyclic codes over finite rings
It is well known that cyclic linear codes of length n over a (finite) field F can be characterized in terms of the factors of the polynomial x"-1 in F[x]. This paper investigates cyclic linear codes over arbitrary (not necessarily commutative) finite tings and proves the above characterization to be true for a large class of such codes over these rings. (~) 1997 Elsevier Science B.V. All rights...
متن کاملLinear Codes over Finite Rings
Linear codes over finite rings with identity have recently raised a great interest for their new role in algebraic coding theory and for their successful application in combined coding and modulation. Thus, in this paper we address the problems of constructing of new cyclic, BCH, alternant, Goppa and Srivastava codes over local finite commutative rings with identity. These constructions are ver...
متن کاملFactoring polynomials over Z4 and over certain Galois rings
It is known that univariate polynomials over finite local rings factor uniquely into primary pairwise coprime factors. Primary polynomials are not necessarily irreducible. Here we describe a factorisation into irreducible factors for primary polynomials over Z4 and more generally over Galois rings of characteristic p. An algorithm is also given. As an application, we factor x − 1 and x + 1 over...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: OALib
سال: 2017
ISSN: 2333-9721,2333-9705
DOI: 10.4236/oalib.1104116